实数x,y满足1+cos2(2x+3y−1)=x2+y2+2(x+1)(1−y)x−y+1,则xy的最小值是_.
问题描述:
实数x,y满足1+cos2(2x+3y−1)=
,则xy的最小值是______.
x2+y2+2(x+1)(1−y) x−y+1
答
∵1+cos2(2x+3y−1)=
,
x2+y2+2(x+1)(1−y) x−y+1
∴1+cos2(2x+3y−1)=
x2+y2+2x+2−2xy−2y x−y+1
∴1+cos2(2x+3y−1)=
(x−y)2+2(x−y)+2 x−y+1
∴1+cos2(2x+3y−1)=
(x−y+1)2+1 x−y+1
∴1+cos2(2x+3y−1)=(x−y+1)+
1 x−y+1
∵(x−y+1)+
≥2,或(x−y+1)+1 x−y+1
≤−21 x−y+1
1≤1+cos2(2x+3y-1)≤2
故1+cos2(2x+3y−1)=(x−y+1)+
=21 x−y+1
此时x-y+1=1,即x=y
2x+3y-1=kπ,即5x-1=kπ,x=
(k∈Z)kπ+1 5
xy=x2=
(k∈Z)(kπ+1)2
25
当k=0时,xy取得最小值
1 25
故答案为:
1 25