已知3sinB=sin(2A+B),求证:tan(A+B)=2tan A.
已知3sinB=sin(2A+B),求证:tan(A+B)=2tan A.
解: 因为 3sinB=sin(2A+B)
所以 3sin(A+B-A)=sin(A+A+B)
3[sin(A+B)cosA-cos(A+B)sinA]=sinAcos(A+B)+cosAsin(A+B)
2sin(A+B)cosA=4cos(A+B)sinA
即:tan(A+B)=2tanA
3sinb=sin(2a+b)可得sin(2a+b)-sinb=2sinb
由两角正弦差的公式:
sin(2a+b)-sinb=2cos[(2a+b+b)/2]sin[(2a+b-b)/2]=2cos(a+b)sina
因此:cos(a+b)sina=sinb,即:cos(a+b)=sinb/sina
则:sin(2a+b)=sin[a+(a+b)]=sinacos(a+b)+cosasin(a+b)……(*)
将sin(2a+b)=3sinb,cos(a+b)sina=sinb代入等式(*):
3sinb=sinb+cosasin(a+b),因此sin(a+b)=2sinb/cosa
则:tan(a+b)=sin(a+b)/cos(a+b)=(2sinb/cosa)/(sinb/sina)
=2(sinb/cosa)*(sina/sinb)=2sina/cosa=2tana
3sinB=sin(2A+B)
3sinB=sinAcos(A+B)+cosAsin(A+B)
3sinB=sinA(cosAcosB-sinAsinB)+cosA(sinAcosB+cosAsinB)
3sinB=sinAcosAcosB-sinAsinAsinB+cosAsinAcosB+cosAcosAsinB
3sinB=2cosAsinAcosB+sinB(cosAcosA-sinAsinA)
3(sinAsinA+cosAcosA)sinB=2cosAsinAcosB+sinB(cosAcosA-sinAsinA)
4sinAsinAsinB+2cosAcosAsinB=2cosAsinAcosB
2sinAsinAsinB+cosAcosAsinB=cosAsinAcosB
2sinAsinAsinB+cosAcosAsinB=2cosAsinAcosB-cosAsinAcosB
2sinAcosAcosB-2sinAsinAsinB=cosAsinAcosB+cosAcosAsinB
2sinA(cosAcosB-sinAsinB)=cosA(sinAcosB+cosAsinB)
2sinAcos(A+B)=cosAsin(A+B)
tan(A+B)=2tan A