设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为(  ) A.q=-2 B.q=1 C.q=-2或q=1 D.q=2或q=-1

问题描述:

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为(  )
A. q=-2
B. q=1
C. q=-2或q=1
D. q=2或q=-1

设等比数列{an}的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2 .若q=1,则Sn=na1,式子显然不成立.若q≠1,则有 2a1(1−qn)1−q=a1(1−qn+1)1−q+a1(1−qn+2)1−q,故2qn=qn+1+qn+2,即q2...