已知函数f(x)=sin(x/2)cos(x/20+cos²x/2-1/2,若f(a)=根号2/4,a∈(0,π),求a的值求详解
问题描述:
已知函数f(x)=sin(x/2)cos(x/20+cos²x/2-1/2,若f(a)=根号2/4,a∈(0,π),求a的值
求详解
答
f(x)=sin(x/2)cos(x/2)+cos²x/2-1/2
=(1/2)sinx-(1/2)(2cos²x/2-1)
=(1/2)(sinx-cosx)
=(√2/2)[(√2/2)sinx-(√2/2)cosx]
=(√2/2)sin(x-π/4)
f(a)=(√2/2)sin(a-π/4)=√2/4
sin(a-π/4)=1/2
因为a∈(0,π)
a-π/4=π/6
a=5π/12
答
应该是f(x)=sin(x/2)cos(x/2)+(cos(x/2))^2-1/2吧?
因为sin(x/2)cos(x/2)=(sinx)/2;
(cos(x/2))^2-1/2=(2*cos(x/2))^2-1)/2=(cosx)/2;
所以,原式=(sinx+cosx)/2=(√2/2)*sin(x+π/4)
答
f(x)=sin(x/2)cos(x/2)+cos²x/2-1/2
=1/2sinx-1/2cosx
=√2/2sin(x-π/4)
f(a)=√2/4=√2/2sin(a-π/4)
sin(a-π/4)=1/2
a-π/4=π/6或5π/6 (舍去)
a=5π/12