如图,圆O与圆O'交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于D

问题描述:

如图,圆O与圆O'交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于D
若AC+BC=根号3*OC,圆O半径为r,求证AB=根号3*r

∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,∵△OAD∽△OCA,∴AD×OC=AC×r,两式相加:(AD+BD)÷r=(AC+BC)...