已知函数f(x)=2sin(1/3x-π/6),x∈R
问题描述:
已知函数f(x)=2sin(1/3x-π/6),x∈R
设a、b∈[0,π/2],f(3a+π/2)=10/13,f(3b+2π)=6/5,求cos(a+b)
答
f(3a+π/2)=2sin(1/3(3a+π/2)-π/6)=2sina=10/13,sina=5/13,cosa=12/13f(3b+2π)=2sin(1/3(3b+2π)-π/6)=2cosb=6/5,cosb=3/5,sinb=4/5cos(a+b)=cosa*cosb-sina*ainb=12/13*3/5-5/13*4/5=16/65