试用分析法证明不等式:(1+1/sin^a)(1+1/cos^a)>=9
问题描述:
试用分析法证明不等式:(1+1/sin^a)(1+1/cos^a)>=9
答
(1+1/sin^a)(1+1/cos^a)
=1+1/sina^2+1/cosa^2+1/(sinacosa)^2
=1+(sina^2+cosa^2)/(sinacosa)^2+1/(sinacosa)^2
=1+2/(1/2sin2a)^2
=1+8/sin2a^2
∵sin2a∴1+8/sin2a^2>=1+8/1=9
答案::(1+1/sin^a)(1+1/cos^a)>=9
我做过着道题
答
(1+1/sin^a)(1+1/cos^a)=1+1/sina+1/cosa+1/sina/cosa
=1+(sina+cosa+1)/(sinacosa)
因为(sina+cosa)^2=1+2sinacosa
原式=1+(sina+cosa+1)*2/((sina+cosa)^2-1)
令m=sina+cosa
-2^0.5原式=1+(m+1)*2/(m^2-1)
=1+2/(m-1)
然后把-2^0.5 ,2^0.5代入即可
答
(1+1/sin^a)(1+1/cos^a)
=1+1/sina^2+1/cosa^2+1/(sinacosa)^2
=1+(sina^2+cosa^2)/(sinacosa)^2+1/(sinacosa)^2
=1+2/(1/2sin2a)^2
=1+8/sin2a^2
因为sin2a所以=1+8/sin2a^2>=1+8/1=9
所以:(1+1/sin^a)(1+1/cos^a)>=9