1.证明当x

问题描述:

1.证明当x

【用“等价证明”】证明:∵由题设知,x<1.∴1-x>0.又此时恒有e^x>0.∴0<e^x≤1/(1-x).0<(1-x)×e^x≤1.构造函数f(x)=(1-x)e^x,(x<1).求导得f'(x)=-e^x+(1-x)e^x=-xe^x.易知,当x<0时,f'(x)=-xe^x>0.当0<x<1时,f'(x)=-xe^x<0.===>在(-∞,0)上,函数f(x)递增,在(0,1)上,函数f(x)递减,∴f(x)max=f(0)=1.即当x<1时,恒有f(x)≤f(0)=1.===>(1-x)e^x≤1.∴当x<1时,有e^x≤1/(1-x).等号仅当x=0时取得.证毕.