∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分
问题描述:
∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分
πm/2
答
补上直线N:y = 0、使得半圆y = √[1 - (x - 1)²]与直线N围成闭区域.P = e^xsiny - my、Q = e^xcosy - m∂P/∂y = e^xcosy - m、∂Q/∂x = e^xcosy∫_(L) (e^xsiny - my) dx + (e^xcosy - ...