如图所示,设G为△ABO的重心,过G的直线与边OA,OB分别交于P,Q,已知向量OP=x向量OA,向量OQ=y向量OB,△
问题描述:
如图所示,设G为△ABO的重心,过G的直线与边OA,OB分别交于P,Q,已知向量OP=x向量OA,向量OQ=y向量OB,△
OAB与△OPQ的面积风别为S和T.求:(1)函数y=f(x)的解析式;(2)T/S的取值范围.
答
(1)向量OP+PG=OQ+QG=OG=(OA+OB)/3,
PG=(1/3-x)OA+(1/3)OB,
QG=(1/3)OA+(1/3-y)OB,
向量PG‖QG,
∴1/(1-3x)=1-3y,
∴y=(1/3)[1-1/(1-3x)]=x/(3x-1)
由0