如图1,在三角形ABC中,角ABC、角ACB的平分线相交于点O已知角A=40度求角BOC的度数2、如图2三角形A'B'C'的外
问题描述:
如图1,在三角形ABC中,角ABC、角ACB的平分线相交于点O已知角A=40度求角BOC的度数2、如图2三角形A'B'C'的外
平分线相交于点O',角A'=40度,求角B'O'C'的度数3、上面1、2两题中的角BOC与角B'O'C'有怎样的数量关系?若角A=角A'=N度,角BOC与角B'O'C'是否还具有这样的关系?这个结论你怎么得到的?
答
角ABC+角ACB=180-40=140
因为角ABC、角ACB的平分线相交于点O
所以∠OBC+∠OCB=70°
因为三角形的内角和为180°
所以角BOC=110°
同理∠B'O'C'=70°
数量关系为∠BBOC+∠B'O'C'=180°
具有
因为∠BOC=90°+1/2∠A
∠B'O'C'=90°-1/2∠A(可由上几步推出)
所以∠BOC+∠B'O'C'=180°