(1+1/1+3)*(1+1/2*4)*(1+1/3*5)*.*(1+1/98*100)*(1+1/99*101)
问题描述:
(1+1/1+3)*(1+1/2*4)*(1+1/3*5)*.*(1+1/98*100)*(1+1/99*101)
规律:1+1/1*3=1*3+1/1*3=4/1*3=2^2/1*3
1+1/3*4=2*4+1/2*4=9/2*4=3^2/2*4
1+1/3*5=3*5+1/3*5=16/3*5=4^2/3*5
.
根据规律,可猜测:1+1/(2n-1)*(2n+1)=____________(n为整数)
1+1/2n*(2n+2)=__________(n为正整数)
根据规律计算:(1+1/1+3)*(1+1/2*4)*(1+13*5)*(1+1/4*6)*.*(1+1/18*100)*(1+1/99*101)
答
1+1/(2n-1)*(2n+1)=(2n)^2/(2n-1)*(2n+1)(n为整数) 1+1/2n*(2n+2)=(2n+1)^2/2n*(2n+2)(n为正整数) (1+1/1*3)*(1+1/2*4)*(1+/3*5)*(1+1/4*6)*.*(1+1/98*100)*(1+1/99*101)=200/101...