已知函数y=log2(x/4)log4(x/2)(2≤x≤4)

问题描述:

已知函数y=log2(x/4)log4(x/2)(2≤x≤4)
(1)当x=4(2/3)【就是4的2/3次幂】时,求y的值
(2)令t=log2(x),求y关于t的函数关系式,t的范围.
(3)求该函数的值域

∵y=(log2(x)-2)*(log2(x)-1)/2(1)∴x=4^(2/3)=2^(4/3) y=(4/3-2)*(4/3-1)/2=-1/9(2)t=log2(x),∴y=(t-2)*(t-1)/2=(t^2-3t+2)/2(3)∵t=log2(x),∴t∈R∵y=(t-2)*(t-1)/2=(t^2-3t+2)/2=(t-3/2)^2/2-1/8∴ymin=-1/8...