不定积分∫(xcosx)/sin²x dx等于多少?

问题描述:

不定积分∫(xcosx)/sin²x dx等于多少?

∫[xcosx/(sinx)^2]dx
=∫[x/(sinx)^2]d(sinx)
=-∫xd(1/sinx)
=-x/sinx+∫(1/sinx)dx
=-x/sinx+∫[sinx/(sinx)^2]dx
=-x/sinx-∫[1/(sinx)^2]d(cosx)
=-x/sinx-(1/2)∫{(1+cosx+1-cosx)/[(1+cosx)(1-cosx)]}d(cosx)
=-x/sinx-(1/2)∫[1/(1-cosx)]d(cosx)-(1/2)∫[1/(1+cosx)]d(cosx)
=-x/sinx+(1/2)ln(1-cosx)-(1/2)ln(1+cosx)+C