平面四边形ABCD中,E,F分别是AD,BC的中点,AB=√2,EF=1,CD=√3,向量AD*BC=15,向量AC*BD=?
问题描述:
平面四边形ABCD中,E,F分别是AD,BC的中点,AB=√2,EF=1,CD=√3,向量AD*BC=15,向量AC*BD=?
答
AC*BD=(AB+BC)(BA+AD)
=-AB²+AB*AD-AB*BC+AD*BC
=-AB²+AB(AD-BC)+15
=-AB²+AB(AB+BC+CD-BC)+15
=AB*CD+15
EF=EA+AB+BF,EF=ED+DC+CF
于是2EF=EA+AB+BF+ED+DC+CF
因为E,F分别是AD,BC中点,于是EA+ED=0,BF+CF=0
于是2EF=AB+DC
4EF²=(AB+DC)²=4
AB²+2AB*DC+DC²=4
2+2AB*DC+3=4
得AB*DC=-1/2,AB*CD=1/2
于是AC*BD=AB*CD+15=(1/2)+15=31/2