试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量的乘积成正比,与两者距离的二次方成反比(提示:可将行星的运动看作是以太阳为圆心的匀

问题描述:

试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量的乘积成正比,与两者距离的二次方成反比(提示:可将行星的运动看作是以太阳为圆心的匀速圆周运动).

设行星的质量为m,太阳质量为M,行星绕太阳做匀速圆周运动的轨道半径为R,公转周期为T,太阳对行星的引力为F.太阳对行星的引力提供行星运动的向心力F=m(2πT)2R=4π2mT2R根据开普勒第三定律 R3T2=K得:T2=R3K故F=...