(log4^3+log8^3)*(log3^2+log9^2)-log2^4次√32
问题描述:
(log4^3+log8^3)*(log3^2+log9^2)-log2^4次√32
(log4^3+log8^3)*(log3^2+log9^2)-log2^(4√32)(那个4是根号上的)(log旁边的数字是在最下面的)
答
(log4^3+log8^3)*(log3^2+log9^2)-log2^(4√32)
=(log4^3*8^3)*(log3^2*9^2)-log2^(4√32)
=(log2^15)*(log3^6)-log2^(4√32)
=90*log2*log3 -(16√2)log2