log2[log3(log4x)]=log3[log4(log2y)]=0,则x+y=_.

问题描述:

log2[log3(log4x)]=log3[log4(log2y)]=0,则x+y=______.

由log2[log3(log4x)]=log3[log4(log2y)]=0,
得log3(log4x)=log4(log2y)=1,
即log4x=3,log2y=4,
解得:x=64,y=16.
∴x+y=64+16=80.
故答案为:80.