已知抛物线C1:y=x*2-4x+3,将C1绕点P(t,1)旋转180°得C2,若C2的顶点在抛物线C1上,求C2解析式

问题描述:

已知抛物线C1:y=x*2-4x+3,将C1绕点P(t,1)旋转180°得C2,若C2的顶点在抛物线C1上,求C2解析式

已知C1:y=x^2-4+3变形得:y=(x-2)^2-1所以C1的顶点为(2,-1)将C1绕点P(t,1)旋转180°得C2也就是说,C1和C2关于P点中心对称.所以C2的顶点坐标(a,b)和C1的顶点坐标满足关系:(a+2)/2=t (b-1)/2=1所以a=2t-2,b=3所...