如图,△ABC,△CEF均为等腰直角三角形,∠ABC=∠CEF=90°,C、B、E在同一直线上,连接AF,M是AF的中点,连接MB、ME.延长BM交EF于点D. 求证:MB=MD=ME.
问题描述:
如图,△ABC,△CEF均为等腰直角三角形,∠ABC=∠CEF=90°,C、B、E在同一直线上,连接AF,M是AF的中点,连接MB、ME.延长BM交EF于点D.
求证:MB=MD=ME.
答
证明:∵∠ABC=∠CEF=90°,
∴AB⊥CE,EF⊥CE,
∴AB∥EF,
∴∠BAM=∠DFM,
∵M是AF的中点,∴AM=MF,
在△ABM和△FDM中,
,
∠BAM=∠DFM AM=FM ∠AMB=∠FMD
∴△ABM≌△FDM(ASA),
∴BM=MD,AB=DF.
∵BE=CE-BC,DE=EF-DF,
∴BE=DE,
∴△BDE是等腰直角三角形,M为BD中点,故△BEM是等腰直角三角形,
∴BM=EM,
即MB=MD=ME.