如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°,连接BE、CD交于点M.求证:BE=CD.
问题描述:
如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°,连接BE、CD交于点M.求证:BE=CD.
答
证明:∵△ABD和△ACE都是等腰直角三角形,
∴AB=AD,AE=AC,
又∵∠BAD=∠CAE=90°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即:∠DAC=∠BAE,
在△ABE和△ADC中,
,
AB=AD ∠BAE=∠DAC AE=AC
∴△ABE≌△ADC( SAS)
∴BE=DC.