、直线3x + 4y + 2 = 0与圆x2 + y2 + 4x = 0交于A,B两点,则线段AB的垂直平分线的方程是
问题描述:
、直线3x + 4y + 2 = 0与圆x2 + y2 + 4x = 0交于A,B两点,则线段AB的垂直平分线的方程是
A 4x-3y-2 = 0 B 4x-3y-6 = 0
C 4x + 3y + 6 = 0 D 4x + 3y + 8 = 0
答
圆x2 + y2 + 4x = 0
(x+2)^2+y^2=4
圆心(-2,0)
垂直平分线与直线3x + 4y + 2 = 0垂直
斜率=4/3
y-0=4/3(x+2)
3y=4x+8
4x-3y+8=0