解线性方程组(1)2x1-x2+x3-2x4=7 (2)x1+2x2-3x3=-4 (3)-x1-x2+x3+4x4=4 (4)3x1+x2-x3-6x4=0
问题描述:
解线性方程组(1)2x1-x2+x3-2x4=7 (2)x1+2x2-3x3=-4 (3)-x1-x2+x3+4x4=4 (4)3x1+x2-x3-6x4=0
答案是x1=3,x2=-2,x3=1,x4=1
答
增广矩阵 =2 -1 1 -2 71 2 -3 0 -4-1 -1 1 4 43 1 -1 -6 0r1+2r3,r2+r3,r4+3r3,r3*(-1)0 -3 3 6 150 1 -2 4 01 1 -1 -4 -40 -2 2 6 12r1+3r2,r3-r2,r4+2r20 0 -3 18 150 1 -2 4 01 0 1 -8 -40 0 -2 14 12r1*(-1/3),r...