已知函数f(x)的导函数f′(x)=2x-9,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n= _ .

问题描述:

已知函数f(x)的导函数f′(x)=2x-9,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n= ___ .

因为f′(x)=2x-9,所以可设f(x)=x2-9x+k,
由f(0)=k,k为整数,n为正整数,可得f(n+1)及f(n)均为整数.
配方可得f(x)=x2-9x+k=(x-4.5)2-4.52+k,为开口向上的二次函数,对称轴为x=4.5
当x∈(4,5]时,f(x)max-f(x)min=f(5)-f(4.5)=0.25,
又f(5)=-20+k∈Z,故只有1个整数f(5).
即当x∈(4,5]时,f(x)的值为整数的个数有且只有1个
故答案为:4