已知方程x+4ax+3a+1=0(a>1)的两根为tanα,tanβ,且α,β∈(-π/2,π/2),则tan[(α+β)/2]
问题描述:
已知方程x+4ax+3a+1=0(a>1)的两根为tanα,tanβ,且α,β∈(-π/2,π/2),则tan[(α+β)/2]
答
tana+tanb=-4a0,综合得tana
已知方程x+4ax+3a+1=0(a>1)的两根为tanα,tanβ,且α,β∈(-π/2,π/2),则tan[(α+β)/2]
tana+tanb=-4a0,综合得tana