定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围_.

问题描述:

定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围______.

①当lnx>0时,因为f(x)在区间[0,+∞)上是单调增函数
所以f(1)<f(lnx)等价于1<lnx,解之得x>e;
②当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,
可得f(1)<f(lnx)等价于f(1)<f(-lnx),
再由函数f(x)在区间[0,+∞)上是单调增函数,得到1<-lnx,即lnx<-1,
解之得0<x<

1
e

综上所述,得x的取值范围是x>e或0<x<
1
e

故答案为:(0,
1
e
)∪(e,+∞).