如图,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若EF/BE=a/b,那么GE/BE等于 _ .

问题描述:

如图,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若

EF
BE
=
a
b
,那么
GE
BE
等于 ___ .

连接CE,
∵AB=AC,AD⊥BC
∴BE=CE,∠ABE=∠ACE
∵CG∥AB
∴∠ABE=∠G
∴∠ACE=∠G
∴△GEC∽△CEF

GE
CE
=
EC
EF

GE
BE
=
BE
EF

EF
BE
=
a
b

GE
BE
=
b
a