已知锐角三角形ABC中,内角ABC的对边长分别为a,b,c,向量m=(根号3,2-sinB)
问题描述:
已知锐角三角形ABC中,内角ABC的对边长分别为a,b,c,向量m=(根号3,2-sinB)
已知锐角三角形ABC中,内角ABC的对边长分别为a,b,c,向量m=(根号3,-2sinB)向量n=(2cos平方B/2-1,cos2B)且m平行n,角B为锐角[1]求角B的大小,[2]设b=2求三角形的面积最大值
答
第一个问题:∵向量m=(√3,-2sinB)、向量n=(2[cos(B/2)]^2-1,cos2B),且向量m∥向量n,∴√3cos2B+2sinB{2[cos(B/2)]^2-1}=0,∴√3cos2B+2sinBcosB=0,∴√3cos2B+sin2B=0,∴tan2B=-√3.∵0...