OA、OB是圆O的半径,OA垂直OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q的圆O的直线交OA延长线于R
问题描述:
OA、OB是圆O的半径,OA垂直OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q的圆O的直线交OA延长线于R
且PR=RQ,求证:RQ与圆O相切
答
P在OA上,所以PQ
OA、OB是圆O的半径,OA垂直OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q的圆O的直线交OA延长线于R
且PR=RQ,求证:RQ与圆O相切
P在OA上,所以PQ