过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
问题描述:
过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
答
设M的坐标为(x,y),
则A、B两点的坐标分别是(2x,0),(0,2y),连接PM,
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=
,
(x−2)2+(y−4)2
|AB|=
,
(2x)2+(2y)2
∴2
=
(x−2)2+(y−4)2
.
4x2+4y2
化简,得x+2y-5=0即为所求的轨迹方程.