在锐角三角形ABC中,边a,b是方程x^2-2根号3x+2=0的两根,角A,B满足2Sin(A+B)-根号3=0,则边c长为

问题描述:

在锐角三角形ABC中,边a,b是方程x^2-2根号3x+2=0的两根,角A,B满足2Sin(A+B)-根号3=0,则边c长为

由题得
a+b=2√3
a*b=2
a^2+b^2=(a+b)^2-2ab=12-4=8
sin(A+B)=√3/2
A+B=60°或120°
因为是锐角三角形
所以取A+B=120°
则角C=60°
利用余弦定理
cosC=(a^2+b^2-c^2)/(2ab)
1/2=(8-c^2)/4
c^2=6
c=√6