数学题(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,
问题描述:
数学题(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,
(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)解方程,好像有两种解
答
(x-4)/(x-3)+(x-6)/(x-5)=(x-8)/(x-7)+(x-10)/(x-9)(x-4)/(x-3)-(x-10)/(x-9)=(x-8)/(x-7)-(x-6)/(x-5)[(x-4)(x-9)-(x-10)(x-3)]/[(x-3)(x-9)]=[(x-8)(x-5)-(x-6)(x-7)]/[(x-5)(x-7)]6/(x^2-12x+27)=-2/(x^2-12x+35)...