等比数列an的前n项和为Sn,任意的n∈n+,点﹙n,Sn﹚在函数y=bⁿ+r﹙b>0且b≠0,b,r为常数﹚图像上
问题描述:
等比数列an的前n项和为Sn,任意的n∈n+,点﹙n,Sn﹚在函数y=bⁿ+r﹙b>0且b≠0,b,r为常数﹚图像上
Ⅰ求r的值
Ⅱ当b=2时,记Bn=4an/n+1﹙n∈n+﹚求数列的前n项和Tn
修改∶Ⅱ当b=2时,记Bn=n+1/4an﹙n∈n+﹚求数列的前n项和Tn
答
Sn=p(q^n-1)/(q-1)
b+r=p,b^2+r=pq+p,b^3+r=p(q^2+q+1)
b=q,p=b-1
r=-1
b=2时,an=2^n-1
Bn=n+1/4an
B1=1+1/4,B2=2+1/8,.Bn=n+1/2^(n+1)
Tn=(1+n)*n/2+[1-(1/2)^n]/2b+r=p,没看懂点﹙n,Sn﹚在函数y=bⁿ+r﹙b>0且b≠0,b,r为常数﹚图像上,代入n=1,n=2,n=3,得b+r=p,b^2+r=pq+p,b^3+r=p(q^2+q+1)然后往下解