设lg2x-lgx2-2=0的两根为α,β,则logαβ+logβα=_.
问题描述:
设lg2x-lgx2-2=0的两根为α,β,则logαβ+logβα=______.
答
设t=lgx,则lg2x-lgx2-2=0可化为t2-2t-2=0
∵△>0∴t1+t2=2,t1×t2=-2
∴lgα+lgβ=2,lgα×lgβ=-2
∵logαβ+logβα=
+lgβ lgα
=lgα lgβ
=
lg2β+lg2α lgα•lgβ
=(lg β+lg α) lgα•lgβ
=(lgα+lgβ)2−2lgα•lgβ lgα•lgβ
=-4
22−2×(−2) −2
故填-4