设lg2x-lgx2-2=0的两根为α,β,则logαβ+logβα=_.

问题描述:

设lg2x-lgx2-2=0的两根为α,β,则logαβ+logβα=______.

设t=lgx,则lg2x-lgx2-2=0可化为t2-2t-2=0
∵△>0∴t1+t2=2,t1×t2=-2
∴lgα+lgβ=2,lgα×lgβ=-2
∵logαβ+logβα=

lgβ
lgα
+
lgα
lgβ
=
lg2β+lg2α
lgα•lgβ
=
(lg β+lg α)
lgα•lgβ
=
(lgα+lgβ)2−2lgα•lgβ
lgα•lgβ
=
22−2×(−2)
−2
=-4
故填-4