设二次函数f(x)=x2+px+q,集合A={x| f(x)=x,x∈R},集合B={x| f(x-1)=x+1,x∈R},当A={2}时,求集合B.

问题描述:

设二次函数f(x)=x2+px+q,集合A={x| f(x)=x,x∈R},集合B={x| f(x-1)=x+1,x∈R},当A={2}时,求集合B.

由已知,方程x^2+px+q=x只有一个解是2.所以判别式=0且把2带进去等式成立.也就是(p-1)^2=4q且4+2p+q=2.所以(p-1)^2=4*(-2-2p)所以p^2-2p+1=-8-8p所以p^2+6p+9=0所以(p+3)^2=0所以p=-3所以q=4所以f(x)=x^2-3x+4那么B集...