已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+) (1)证明:数列{an+1-an }是等比数列; (2)求数列{an}的通项公式.
问题描述:
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+)
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式.
答
(1)证明:∵an+2=3an+1-2an∴an+2-an+1=2(an+1-an)又a1=1,a2=3即an+2−an+1an+1−an=2∴数列{an+1-an}是以2为 首项,2为公比的等比数列(2)由(1)知an+1-an=2n∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+...