sin3x-sin2x+sinx=0

问题描述:

sin3x-sin2x+sinx=0

sin3x
=sin(2x+x)
=sin2xcosx+cos2xsinx
=2sinxcosxcosx+cos2xsinx
=2sinxcos²x+cos2xsinx
sin3x-sin2x+sinx
=2sinxcos²x+cos2xsinx-sin2x+sinx=0
若sinx=0 此时x=kπ
若sinx≠0时,得:
2cos^2x+cosx+1=0
相当于一元二次方程2x^2+x+1=0的解
易知此方程无解(判别式△=1-8你好,可是答案是x=kπ/2或x=2kπ+π/3或x=2kπ-π/3我想用这个方法就可以得到你上面的答案了sin3x-sin2x+sinx=0利用和差化积公式:2sin2xcosx -sin2x=0sin2x(2cosx-1)=0∴sin2x=0或(2cosx-1)=0sin2x=0;解得:x=kπ或π/2+kπ;等价于kπ/22cosx-1=0解得:x=π/3+2kπ或2kπ-π/3