求积分 ∫ (sinx+cosx)e^x
问题描述:
求积分 ∫ (sinx+cosx)e^x
答
∫ (sinx+cosx)e^x dx
=∫ (sinx+cosx)de^x
=(sinx+cosx)e^x-∫ (cosx-sinx)e^x dx
=(sinx+cosx)e^x-∫ (cosx-sinx)de^x
=(sinx+cosx)e^x-(cosx-sinx)e^x +∫ (-sinx-cosx)e^x dx
移项得
∫ (sinx+cosx)e^x dx=1/2[(sinx+cosx)e^x-(cosx-sinx)e^x]+C
=sinxe^x+C