已知三角形ABC P是平面ABC上一点,求证P到三角形ABC三顶点距离平方之和取得最小值是,点P恰好为三角形ABC重心
问题描述:
已知三角形ABC P是平面ABC上一点,求证P到三角形ABC三顶点距离平方之和取得最小值是,点P恰好为三角形ABC重心
答
把三角形ABC 置于直角坐标系中,设三角形ABC 三顶点坐标为(x1,y1),(x2,y2),(x3,y3),点P坐标(x,y),P到三角形ABC三顶点距离平方之和=(x-x1)²+(y-y1)²+(x-x2)²+(y-y2)²+(x-x3)²+(y-y3)²=3...