如图,∠DAB+∠ABC+∠BCE=360°. (1)求证:AD∥CE; (2)在(1)的条件下,如图,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.
问题描述:
如图,∠DAB+∠ABC+∠BCE=360°.
(1)求证:AD∥CE;
(2)在(1)的条件下,如图,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.
答
(1)证明:过点B作BM∥AD,∴∠DAB+∠ABM=180°,∵∠DAB+∠ABC+∠BCE=360°,∴∠MBC+∠BCE=180°,∴BM∥CE,∴AD∥CE;(2)设∠BAF=x°,∠BCF=y°,∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F,∴∠HAF=∠BAF=x...