如图,∠DAB+∠ABC+∠BCE=360°.(1)求证:AD∥CE;(2)在(1)的条件下,如图,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.

问题描述:

如图,∠DAB+∠ABC+∠BCE=360°.

(1)求证:AD∥CE;
(2)在(1)的条件下,如图,作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.

(1)证明:过点B作BM∥AD,∴∠DAB+∠ABM=180°,∵∠DAB+∠ABC+∠BCE=360°,∴∠MBC+∠BCE=180°,∴BM∥CE,∴AD∥CE;(2)设∠BAF=x°,∠BCF=y°,∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F,∴∠HAF=∠BAF=x...
答案解析:(1)首先过点B作BM∥AD,由平行线的性质可得∠DAB+∠ABM=180°,又由∠DAB+∠ABC+∠BCE=360°,即可证得∠MBC+∠BCE=180°,则BM∥CE,继而证得结论;
(2)首先设∠BAF=x°,∠BCF=y°,过点B作BM∥AD,过点F作FN∥AD,根据平行线的性质,可得∠AFC=(x+2y)°,∠ABC=(2x+y)°,又由∠F的余角等于2∠B的补角,可得方程:90-(x+2y)=180-2(2x+y),继而求得答案.
考试点:平行线的性质.
知识点:此题考查了平行线的性质与判定以及余角、补角的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.