设f(x)实在定义域R上的偶函数,当0≤x<π/2时,f(x)=cos(x+π/3)-1/2,且f(π+π/3)=f(x)

问题描述:

设f(x)实在定义域R上的偶函数,当0≤x<π/2时,f(x)=cos(x+π/3)-1/2,且f(π+π/3)=f(x)
1.求出f(x)在(-π/2,π/2)上的解析式
2.求f(31/6π)

1)f(x)在R上是偶函数,则f(x)=-f(-x)
已知0≤x≤π/2时,f(x)=cos(x+π/3)-1/2;则f(x)=-f(-x)=-cos(-x+π/3)+1/2=cos(x-π/3)+1/2
2)f(31π/6)=f(π+1π/6)=f(1π/6)=-1/2