已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射. (1)若B中每一元素都有原象,这样不同的f有多少个? (2)若B中的元素0必无原象,这样的f有多少个? (3)若f满足f(a1)+f(
问题描述:
已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
答
(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3...