函数y=(x-2)^(3/2)+(3x-7)^0的定义域为( )

问题描述:

函数y=(x-2)^(3/2)+(3x-7)^0的定义域为( )
答案是[2,7/3]∪(7/3,+∞)

要使函数y=(x-2)^(3/2)+(3x-7)^0有意义
必须x-2≥0即x≥2且3x-7不等于零
即x不等于7/3
所以函数y=(x-2)^(3/2)+(3x-7)^0的定义域为
[2,7/3)∪(7/3,+∞)