函数f(x)=3ax^2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0

问题描述:

函数f(x)=3ax^2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0
求证(1)A>0,且-2
那么可知f(-b/2a)

(1)f(0)>0 => c>0;
f(1)>0 => 3a+2b+c>0;
2a+2b+2c=0;
so
a-c>0 => a>c>0;
c=-a-b => 2a+b>0 =>2a>-b>0 => b (b/a)>-2
c=-a-b>0 => a+b0) =>(b/a)0 => 有两个不等实根
-2