用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转. (
问题描述:
用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.
答
(1)BE=CF.
证明:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF.
∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).
∴BE=CF;
(2)BE=CF仍然成立.
证明:在△ACE和△ADF中,
∵∠CAE+∠EAD=∠FAD+∠DAE=60°,
∴∠CAE=∠DAF,
∵∠BCA=∠ACD=60°,
∴∠FCE=60°,
∴∠ACE=120°,
∵∠ADC=60°,
∴∠ADF=120°,
在△ACE和△ADF中,
∠FAD=∠CAE AC=AD ∠ADF=∠ACE
∴△ACE≌△ADF,
∴CE=DF,
∴BE=CF,