在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作三角形ADE,使AD=AE,∠DAE=∠BAC,连接CE.

问题描述:

在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作三角形ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)当点D在线段BC上,如果∠BAC=90°,则∠BCE=?
(2)设∠BAC=a,∠BCE=β
当点D在线段BC上移动,则a,β有什么样的关系?理由?
当点D在BC上移动,则a,β有怎样的数量关系?不需理由
主要是(2)题 题号写清楚

1)易证△ABD≌△ACE(SAS),则得∠ACE=∠B=45°
所以∠BCE=∠ACB+∠ACE=45°+45°=90°
(2)当点D在线段BC上移动时
易证△ABD≌△ACE(SAS),则得∠ACE=∠B=90°-a/2
∠BCE=∠ACB+∠ACE=(90°-a/2)+(90°-a/2)=180°-a
即β=180°-a
当点D在BC上移动时
若点D在B点左侧直线上时,则β=a
∴,则β=180°+a