如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠AED=2∠C, 求证:AC=AB+CE.

问题描述:

如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠AED=2∠C,
求证:AC=AB+CE.

证明:∵AD是△ABC的角平分线,
∴∠BAD=∠EAD,
∵∠B=2∠C,∠AED=2∠C,
∴∠B=∠AED,
在△ABD和△AED中,

∠BAD=∠EAD
∠B=∠AED
AD=AD

∴△ABD≌△AED(AAS),
∴AE=AB,
∵AC=AE+CE,
∴AC=AB+CE.