设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界
问题描述:
设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界
答
设lim[x→0]f(x)=a.
对ε=1,存在1>δ>0,当x∈(0,δ)时,|f(x)-a|