设y=f(x^3)+f(sinx),f具有一阶导数,求dy/dx
问题描述:
设y=f(x^3)+f(sinx),f具有一阶导数,求dy/dx
答
y=f(x^3)+f(sinx)
复合函数求导:
y'=f'(x^3)(x^3)'+f'(sinx)(sinx)'
=3x^2f'(x^3)+cosxf'(sinx)
所以
dy/dx=3x^2f'(x^3)+cosxf'(sinx)